US ERA ARCHIVE DOCUMENT

Acid Rain Program SO₂ Emissions 1980 - 2006

Phase I sources

Phase II sources

Note: Data for 2006 are preliminary and will be final Summer 2007

Monitored Reductions in Ambient Sulfate Concentrations

Monitored Reductions Wet Inorganic Sulfate Deposition

NADP

What are the Impacts of Deposition Changes on Ecosystems: Long-term Surface Water Monitoring Chemistry Trends

TIME/LTM (Surface Water Monitoring)

- Regional declines in surface water sulfate can be directly linked to declines in emissions and deposition of sulfur
- In three regions, one-quarter to onethird of lakes and streams previously affected by acid rain are no longer acidic

Regional Trends in Lakes and Streams Acidity, 1990-2004

- Regional Acid Neutralizing Capacity (ANC), a key indicator of recovery, did not change significantly in New England or in Blue Ridge streams
- Surface water nitrate concentrations are largely unchanged except in Adirondacks and Northern Appalachian Plateau

Putting it All Together: The Acid Rain Example

SO₂ Emissions Under the ARP

Assessing
Environmental
Change Over
Time and Space
to Demonstrate
Program
Effectiveness

Acid Lake Response

1989-1991

2003-2005

Nationwide SO₂ and NO_X Emissions from the Power Sector

Projected Change in Sulfur Deposition with CAIR/CAMR/CAVR Acid Sensitive Ecosystems

